
Compact Recurrent Neural Network based on Tensor
Train for Polyphonic Music Modeling

Andros Tjandra, Sakriani Sakti, Satoshi Nakamura
Graduate School of Information Science
Nara Institute of Science and Technology

{andros.tjandra.ai6, ssakti, s-nakamura}@is.naist.jp

Abstract

This paper introduces a novel compression method for recurrent neural networks
(RNNs) based on Tensor Train (TT) format. The objective in this work are to
reduce the number of parameters in RNN and maintain their expressive power.
The key of our approach is to represent the dense matrices weight parameter in
the simple RNN and Gated Recurrent Unit (GRU) RNN architectures as the n-
dimensional tensor in TT-format. To evaluate our proposed models, we compare it
with uncompressed RNN on polyphonic sequence prediction tasks. Our proposed
TT-format RNN are able to preserve the performance while reducing the number
of RNN parameters significantly up to 80 times smaller.

1 Introduction

Recurrent neural networks have recently become a popular choice in machine learning for modeling
temporal and sequential tasks. Despite it has been studied for about two decades [Elman, 1990,
Hochreiter and Schmidhuber, 1997], people interest on RNN has been growing lately thanks to the
significant improvement of current computational power and the amount of available data. Many
state-of-the-arts in speech recognition [Hannun et al., 2014, Amodei et al., 2015] and machine
translation [Wu et al., 2016, Bahdanau et al., 2014, Sutskever et al., 2014] has been achieved by
RNNs.

Despite the fact that current RNN has a good expressive power, most RNN models are computationally
expensive and have a huge number of parameters. Since RNNs are constructed by multiple linear
transformations followed by nonlinear transformations, we need multiple high-dimensional dense
matrices as parameters. In time-steps, we need to apply multiple linear transformations between our
dense matrix with high-dimensional input and previous hidden states. Especially for state-of-the-art
models on speech recognition [Amodei et al., 2015] and machine translation [Wu et al., 2016], such
huge models can only be implemented in high-end cluster environments because they need massive
computation power and millions of parameters. This limitation prevent us to create efficient RNN
models that are fast enough for massive real-time inference or small enough to be implemented in
low-end devices like mobile phones [Schuster, 2010] or embedded systems with limited memory.

A number of researchers have done notable work to minimize the accuracy loss and maximize the
model efficiency, trying to balance the trade-off between high performance and smaller model. Hinton
et al. [2015] and Ba and Caruana [2014] successfully compressed a large deep neural network into a
smaller neural network by training the latter on the transformed softmax outputs from the former.
Distilling knowledge from larger neural networks has also been successfully applied to recurrent
neural network architecture by [Tang et al., 2016]. Denil et al. [2013] utilized low-rank matrix
decomposition to represent the weight matrices. A recent study by Novikov et al. [2015] replaced the
dense weight matrices with Tensor Train (TT) format [Oseledets, 2011] inside convolutional neural
network (CNN) model. With the TT-format, they significantly compress the number of parameters

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Figure 1: Illustration of Eq.1: Calculating an elementW(j1, .., jk) using set of TT-cores {Gk[jk]}dk=1

and kept the model accuracy degradation to a minimum. However, to the best of our knowledge, no
study has focused on compressing more complex neural networks such as RNNs with a tensor-based
representation.

In this work, we introduce our recent work on a novel RNN architecture called as TT-RNN [Tjandra
et al., 2017] 1, which is an RNN based on TT-format. We apply TT-format to reformulate two
different RNNs: a simple RNN and a GRU RNN. Our proposed RNN architectures are evaluated
on polyphonic sequence modeling. In section 2 we describe our proposed TT-RNN. In section 3,
we describe the tasks and datasets, followed by the experimental results. Finally, we summarize our
result in Section 4.

2 Compressing RNN with TT-format

We can represent d-dimensional array (tensor) W 2 in TT-format [Oseledets, 2011] if for each
k ∈ {1, .., d} and for each possible value of the k-th dimension index jk ∈ {1, .., nk} there exists a
matrix Gk[jk] such that all elements ofW can be computed (illustrated in Fig. 1) by the following
equation:

W(j1, j2, .., jd) = G1[j1] ·G2[j2] · .. ·Gd[jd]. (1)

For all matrices Gk[jk] related to the same dimension k, they must be represented with size rk−1 × rk,
where r0 and rd must be equal to 1 to retain the final matrix multiplication result as a scalar. In
TT-format, we define a sequence of rank {rk}

d
k=0 and we call them TT-rank from tensorW. The set of

matrices Gk = {Gk[jk]}nk
jk=1 where the matrices are spanned in the same index are called TT-core.

To create an intuitive example on how to represent a tensor using a set of TT-cores, we illustrate how
to represent a tensorW element at (1, 0, 3) with 3 TT-cores in Figure 2.

Figure 2: Representing a tensorW element at (1, 0, 3) using 3 TT-cores G1,G2 and G3. Blue shaded
vectors or matrices are used for chain multiplication

Inside RNN architecture, we focus our attention on compressing two dense weight matrices: Wxh,Whh.
We define Wxh ∈ R

M×N as input-to-hidden and Whh ∈ R
M×M as hidden-to-hidden weight matrices.

1The long version of this paper with title "Compressing Recurrent Neural Network with Tensor Train" has
been presented at 30th International Joint Conference on Neural Network (IJCNN) 2017

2In this paper, we denote d-dimensions tensor with calligraphic uppercase letter (e.g.,W) and matrix with
standard uppercase letter (e.g., W)

2

First, we factorize matrix shape M into
∏d

k=1 mk and N into
∏d

k=1 nk. Next, we determine the TT-rank
{rk}

d
k=0 for our model and substitute Wxh with tensorWxh and Whh with tensorWhh. TensorWxh is

represented by set of TT-cores {Gxh
k }

d
k=1 where ∀k ∈ {1, .., d}, Gxh

k ∈ R
mk×nk×rk−1×rk , and tensorWhh is

represented by set of TT-cores {Ghh
k }

d
k=1 where ∀k ∈ {1, .., d}, Ghh

k ∈ R
mk×mk×rk−1×rk . We define bijective

functions fx
i and fh

i to access row p from Wxh and Whh in the set of TT-cores. We rewrite our simple
RNN formulation to calculate ht:

axh
t (p) =

∑
j1,.., jd

Wxh(fx
i (p), [j1, .., jd]) · Xt (j1, .., jd) (2)

ahh
t (p) =

∑
j1,.., jd

Whh(fh
i (p), [j1, .., jd]) · Ht−1 (j1, .., jd) (3)

axh
t =
[
axh

t (1), .., axh
t (M)

]
(4)

ahh
t =
[
ahh

t (1), .., ahh
t (M)

]
(5)

ht = f (axh
t + ahh

t + bh), (6)

where X is the tensor representation of input xt and Ht−1 is the tensor representation of previous
hidden states ht−1.

For more complex and powerful RNNs such as GRU-RNN [Chung et al., 2014], instead of two
dense weight matrices, we have six dense weight matrices: (Wxr, Whr, Wxz, Whz, Wxh, and Whh).
First, we substitute all six dense matrices with tensor (Wxr,Whr,Wxz,Whz,Wxh,Whh). Tensors
Wxr, Wxz, Wxh are represented by a set of TT-cores ({Gxr

k }
d
k=1, {Gxz

k }
d
k=1, {Gxh

k }
d
k=1) where ∀k ∈

{1, .., d}, (Gxr
k ,G

xz
k ,G

xh
k ∈ R

mk×nk×rk−1×rk). TensorWhr,Whz,Whh are represented by a set of TT-cores
({Ghr

k }
d
k=1, {Ghz

k }
d
k=1, {Ghh

k }
d
k=1) where ∀k ∈ {1, .., d}, (Ghr

k ,G
hz
k ,G

hh
k ∈ R

mk×mk×rk−1×rk). By using similar
formulation in Equations (2) to (6), we calculate the value for reset gate rt, update gate ut and
candidate hidden state ht. For more detailed explanation, please refer to the long version of our paper
Tjandra et al. [2017]3.

3 Experiment
In this section, we evaluate our proposed RNN model with TT-formats (TT-SRNN and TT-GRU)
and compare them to baseline RNNs (a simple RNN and GRU). We conducted the experiments on
sequence prediction tasks, where we predicted the next time-step based on previous information
[Graves et al., 2012]. We used polyphonic music datasets for the sequence prediction task. We train
our model using BPTT and update our weight parameters with Adam optimizer [Kingma and Ba,
2014].

3.1 Polyphonic Music Dataset

We used four polyphonic music datasets [Boulanger et al., 2012]: Piano-midi.de, Nottingham,
MuseData, and JSB Chorales. All of these datasets have 88 binary values per time-step, and each
consists of at least seven hours of polyphonic music. Before we fed our input into the RNN, we
projected them using hidden layer with 256 hidden units. In the polyphonic modeling task, we
measured two different metrics: negative log-likelihood (NLL) and accuracy (ACC). We calculate the
accuracy with following equation: ACC = T P/(T P + FP + FN). We only used true positive (TP),
false positive (FP), false negative (FN) and ignored the true negative (TN) because most of the notes
were turned off in the dataset.

3.2 Model Description

Our baseline models consist of a simple RNN with 512 hidden units and a GRU RNN with 512
hidden units. Our proposed models are TT-SRNN and TT-GRU with 8 × 4 × 4 × 4 (total 512 hidden
units) and 8 × 4 × 8 × 4 (total 1024 hidden units) output shapes and the TT-ranks (3, 5). For our
experiment reports, we simplified the model description as follows: RNN-HF whereF denotes the

3https://arxiv.org/abs/1705.08052

3

https://arxiv.org/abs/1705.08052

number of hidden units (e.g., RNN-H512 means RNN with 512 hidden units) and TT-SRNN-HF-R�
where � denotes the TT-rank (e.g., TT-SRNN-H8x4x4x4-R3 means TT-SRNN with hidden units
reshaped into 8x4x4x4 in TT-format and TT-rank 3). We used a grid search to determine the best
number of hidden layer units for both models and the shape of TT-format based on the validation set
performance.

3.3 Result

Table 1 lists all of the results of our experiments on the baseline and proposed models. We repeat all
experiments five times with different weight parameters initialization.

The table shows that all of these models have similar performances based on the negative log-
likelihood and the accuracy in the test sets. Our proposed models were able to reduce the number of
parameters with significant compression ratio and preserved the performance at the same time.

Table 1: Compression rate, negative log-likelihood (NLL) and accuracy (ACC) for all polyphonic
music test sets

Model Params Compr. Nottingham PianoMidi MuseData JSB Chorales
NLL ACC NLL ACC NLL ACC NLL ACC

RNN-H512 393728 1 3.52±0.03 69.9±0.1 7.67±0.02 26.6±0.4 7.37±0.02 35.1±0.6 8.39±0.01 29.3±0.2
TT-SRNN
H8x4x4x4-R3 1472 267.48 3.78±0.05 68.4±0.3 7.73±0.03 27.3±0.3 7.68±0.01 32.5±0.4 8.51±0.03 28.5±0.2

TT-SRNN
H8x4x4x4-R5 2752 143.07 3.65±0.04 69.0±0.2 7.72±0.01 27.3±0.3 7.63±0.07 33.1±0.7 8.49±0.03 28.8±0.3

GRU-H512 1181184 1 3.39±0.02 71.1±0.2 7.56±0.01 25.7±0.2 7.10±0.02 36.7±0.4 8.23±0.01 30.3±0.1
TT-GRU
H8x4x4x4-R3 4416 267.48 3.77±0.06 68.4±0.2 7.61±0.01 27.1±0.5 7.61±0.01 32.1±0.4 8.45±0.02 28.8±0.3

TT-GRU
H8x4x4x4-R5 8256 143.07 3.64±0.08 69.2±0.4 7.59±0.01 27.4±0.3 7.50±0.09 33.2±1.0 8.47±0.01 28.5±0.4

RNN-H1024 1311744 1 3.39±0.01 71.0±0.2 7.68±0.01 27.1±0.6 7.23±0.01 36.1±0.3 8.45±0.02 28.6±0.1
TT-SRNN
H8x4x8x4-R3 2560 512.4 3.59±0.03 69.5±0.3 7.72±0.04 27.8±0.4 7.69±0.02 32.9±0.4 8.56±0.05 28.8±0.3

TT-SRNN
H8x4x8x4-R5 4864 269.68 3.54±0.01 69.7±0.2 7.68±0.03 27.5±0.4 7.57±0.1 33.4±0.9 8.55±0.03 28.6±0.5

GRU-H1024 3935232 1 3.37±0.02 71.1±0.1 7.54±0.01 26.1±0.3 7.00±0.01 37.1±0.3 8.21±0.02 30.7±0.3
TT-GRU
H8x4x8x4-R3 7680 512.4 3.52±0.04 69.9±0.3 7.61±0.01 26.8±0.4 7.51±0.1 33.1±0.5 8.50±0.04 28.6±0.3

TT-GRU
H8x4x8x4-R3 14592 269.68 3.48±0.04 70.4±0.3 7.59±0.01 27.5±0.2 7.44±0.15 35.0±1.0 8.48±0.02 28.5±0.3

RNN 4 - - 4.46 62.93 8.37 19.33 8.13 23.25 8.71 28.46
RNN-RBM 3 - - 2.39 75.40 7.09 28.92 6.01 34.02 6.27 33.12

4 Conclusion

In this paper, we presented an efficient and compact RNN model using a TT-format representation.
Using a TT-format, we represented dense weight matrices inside the RNN layer with multiple
low-rank tensors. Our proposed TT-SRNN and TT-GRU significantly compressed the number of
parameters while simultaneously retaining the model performance and accuracy. We evaluated our
model with sequence prediction tasks. On the sequence prediction task, we evaluated our model with
multiple music datasets, and our proposed RNNs reduced the RNN parameters up to 80 times smaller
while preserving the performance.

Acknowledgments

Part of this work was supported by JSPS KAKENHI Grant Numbers JP17H06101 and JP17K00237.

References
D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski,

A. Coates, G. Diamos, et al. Deep speech 2: End-to-end speech recognition in English and
Mandarin. arXiv preprint arXiv:1512.02595, 2015.

4Experiment result from Boulanger et al. [2012]

4

J. Ba and R. Caruana. Do deep nets really need to be deep? In Advances in neural information
processing systems, pages 2654–2662, 2014.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014.

N. Boulanger, Y. Bengio, and P. Vincent. Modeling temporal dependencies in high-dimensional
sequences: Application to polyphonic music generation and transcription. In J. Langford and
J. Pineau, editors, Proceedings of the 29th International Conference on Machine Learning (ICML-
12), pages 1159–1166, New York, NY, USA, 2012. ACM. URL http://icml.cc/2012/papers/
590.pdf.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting parameters in deep learning. In
Advances in Neural Information Processing Systems, pages 2148–2156, 2013.

J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

A. Graves et al. Supervised sequence labelling with recurrent neural networks, volume 385. Springer,
2012.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sen-
gupta, A. Coates, et al. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567, 2014.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. Tensorizing neural networks. In Advances
in Neural Information Processing Systems, pages 442–450, 2015.

I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317,
2011. doi: 10.1137/090752286. URL http://dx.doi.org/10.1137/090752286.

M. Schuster. Speech recognition for mobile devices at Google. In Pacific Rim International
Conference on Artificial Intelligence, pages 8–10. Springer, 2010.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

Z. Tang, D. Wang, and Z. Zhang. Recurrent neural network training with dark knowledge transfer. In
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5900–5904. IEEE, 2016.

A. Tjandra, S. Sakti, and S. Nakamura. Compressing recurrent neural network with tensor train.
arXiv preprint arXiv:1705.08052, 2017.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

5

http://icml.cc/2012/papers/590.pdf
http://icml.cc/2012/papers/590.pdf
http://dx.doi.org/10.1137/090752286

	Introduction
	Compressing RNN with TT-format
	Experiment
	Polyphonic Music Dataset
	Model Description
	Result

	Conclusion

