

End-to-end learning for music audio tagging at scale

Which deep learning architecture shall we use for audio tagging?

Front-end Back-end Output Input

Many CNN frontends!

How much data is available? A human-annotated corpus of **1.5M songs**

Can waveform front-ends achieve better performance than spectrogram front-ends?

Waveform front-end

(Lee et al, 2017)

an assumption-free model

#filters in every layer: 64, 64, 64, 128, 128, 128, 256. waveform down-sampled to 16kHz.

Waveform front-end:

- frame-level single-shape < frame-level many-shapes
- frame-level many-shapes << sample-level Specrogram front-end:
 - domain knowledge intuitions are a valid guide for designing your front-end

Many possible backends!

Variable-length input back-end:

- max and average pooling
- attention models
- RNNs

Fixed-length input back-end:

- fully convolutional models
- DNNs

Quantitative results

Note: music is of variable length!

But: most models assume a fixed-length input!

Spectrogram front-end

(Pons et al, 2017)

heavily based on domain knowledge

Shared back-end (Dieleman et al, 2014)

Error

	#training	ROC	PR		ΔROC	ΔPR	Δ	training	Audio segments of 15 sec.
Models	examples	AUC	AUC	\sqrt{MSE}	AUC	AUC	\sqrt{MSE}	time	Song-level predictions:
GBT+features	1.2M	91.61%	54.27%	0.1569	_	_	-	-	 - averaging windowed
Waveform	1 M	91.54%	57.86%	0.1501	0.60%	1 /00/2	0.0021	< 2	 predicions Annotations, 2 distributions: bi-modal, classification tags ROC-AUC and PR-AUC uniform, regression tags
Spectrogram	1 M	92.14%	59.35%	0.1480	0.0%	1.49%	0.0021	weeks	
Waveform	500k	91.23%	56.15%	0.1537	0.54%	1.75%	0.0044	≈ 1	
Spectrogram	500k	91.76%	57.90%	0.1493				week	
Waveform	100k	89.16%	49.25%	0.1591	0.97%	2.83%	0.0049	few	
Spectrogram	100k	90.13%	52.08%	0.1542				days	

Qualitative results

Conclusions

Bias towards predicting popular tags "lead vocals", "English" or "male vocals"

Predicting each tag independently vs. predicting all tags together "East Coast", "West Coast" / "baroque period", "classic period"

Reproduce this experiment online: jordipons.me/apps/music-audio-tagging-at-scale-demo Better performance than GBT+features baseline

spectrogram front-ends > waveform front-end ...but the gap has been reduced! with more training data and Lee et al. front-end

Models' implementation in tensorflow: github.com/jordipons/music-audio-tagging-at-scale-models